N
9
~!
i
i
-
ok
ity
/-3
FH
=
Tor
rir
Ho
A

G A = o 9O|S
L} H = e A
ek 5 Hiojy SSHEFES| 44
UPR IO, Al OOl YmQAL|N, 2
MAHEE TR, Mrfotn

e-mail: quyetict@utehy.edu.vn, sinhngoc.nguyen@gmail.com, truongnguyengiang.bk@gmail.com,
kyungbaekkim@jnu.ac.kr

Design of a Disaster Big Data Platform for Collecting and Analyzing Social Media

Van-Quyet Nguyen, Sinh-Ngoc Nguyen, Giang-Truong Nguyen, Kyungbaek Kim
Dept. of Electronics and Computer Engineering, Chonnam National University

Abstract

Recently, during disasters occurrence, dealing with emergencies has been handled well by the early
transmission of disaster relating notifications on social media networks (e.g., Twitter or Facebook). Intuitively,
with their characteristics (e.g., real-time, mobility) and big communities whose users could be regarded as
volunteers, social networks are proved to be a crucial role for disasters response. However, the amount of data
transmitted during disasters is an obstacle for filtering informative messages; because the messages are diversity,
large and very noise. This large volume of data could be seen as Social Big Data (SBD). In this paper, we proposed
a big data platform for collecting and analyzing disasters’ data from SBD. Firstly, we designed a collecting
module; which could rapidly extract disasters’ information from the Twitter; by big data frameworks supporting
streaming data on distributed system; such as Kafka and Spark. Secondly, we developed an analyzing module
which learned from SBD to distinguish the useful information from the irrelevant one. Finally, we also designed a
real-time visualization on the web interface for displaying the results of analysis phase. To show the viability of
our platform, we conducted experiments of the collecting and analyzing phases in 10 days for both real-time and
historical tweets, which were about disasters happened in South Korea. The results prove that our big data platform
could be applied to disaster information based systems, by providing a huge relevant data; which can be used for

inferring affected regions and victims in disaster situations, from 21.000 collected tweets.

1. Introduction

In the past few years, a number of studies have focused on
collecting and analyzing information of social media data for
detecting disasters using machine learning algorithms. Those
researches utilized Twitter data, which accompanies with
well-known limitations such as demographic bias, is a
particular interest. Sakaki et al. [1] investigated the real-time
nature of Twitter for earthquake event detection by applying
Kalman filtering and particle filtering to estimate the center of
the burst earthquake. However, users are required to specify
explicitly the detected events. And a new classifier needs to
be trained to detect new events, which makes it difficult to be
extended. Imran et al. [2] employed machine learning for
successfully extracting structured information from
unstructured, text-based Twitter messages, and compared
their results with manual classifications based on
crowdsourcing. Vieweg et al. [3] analyzed Twitter messages
during the flooding of the Red River Valley in the US and
Canada in 2009 seeking to discern activity patterns and
extract useful information. Starbird et al. [4] did not only test
the hypothesis, in which crowd behaviors could be served as a
collaborative filter for identifying people tweeting, but also
found that machine learning techniques could be effective in

identifying those who are likely ‘on the ground’. Although
some systems have been proposed for collecting and
analyzing disaster information, they are still restricted either
in the type of data (e.g., only historical data), the type of
storage (e.g., only one local disk on a single computer), or the
size of data they could handle. In this paper, we proposed a
big data platform for collecting and analyzing disaster data
from SBD.

Our work makes the following contributions:

Firstly, we designed and implemented a collecting module
which rapidly extracts disaster information from the
Twitter by big data frameworks that support streaming
data on distributed system such as Kafka and Spark.

Secondly, we implemented algorithms for analyzing
tweets to distinguish the wuseful information from
irrelevant one. We adapt keyword-based and topic-based
filtering which are the common approaches for analyzing
Twitter messages.

Finally, we designed and implemented a real-time
visualization on web interface for illustrating the results of
analysis phase.

- 661 -

2017'd EAStad =3 =28 H242 H13(2017, 4)

Data Source Kafka cluster

§g b Broker 4
Producer Topic: Earthquake

Zookeeper

S Broker 1
,‘-_l_: e) Topic; Traffic Jam

Producers Broker 2
P v =1 Topic: Fire
| Producer 1 | | e——
e i Broker 3 N i
[Producer 2 | . =

2 | Topic: Tyhoon |

2]

Data Analysis

Consumers

Consumer 1

Consumer 2

—— ——

Consumer 3 APACHE
Spark’
Consumer 4 l
Data Storage
—\ —— CN e
[Spark® b= £ ===
‘ §g kafka | Streaming
Consumer - 1..{. /an[D
-

Figure 1. The Architecture of Disaster Big Data Platform

2. The Architecture of Disaster Big Data Platform

We propose a disaster big data platform to support
collecting, real-time processing, and visualization as Figure 1
depicts. For data collecting, we use Kafka [5] which is a
distributed publish-subscribe messaging system and a robust
queue that could handle a high volume of data. Kafka
messages are persisted on the disk and replicated within the
cluster to prevent data losses. It is built on top of the
Zookeeper [6] which allows distributed processes to
coordinate with each other through a shared hierarchal
namespace which is organized similarly to a standard file
system. For data analysis, we use Spark [7] which is a new
cluster computing framework designed for fast computation.
It utilizes the concept of RDD (Resilient Distributed
Datasets), letting users to store data in memory across
queries, which makes RDDs to be read and written up faster
than typical distributed file systems. After the output data of
analysis phase is stored successfully in the database, they
would be visualized on the web interface. The specific
functions are illustrated as follows.

(1) Data Acquisition System. As a big data disaster
analysis platform, it is needed to collect the different types of
disasters, such as building fire, typhoon, earthquake, and
other natural disasters. Those data are available to collect
tweets from Twitter data source. In order to do this, we
implement and deploy Producers using Twitter APIs along
with Kafka Producer. The tweets relating to disasters would
be collected by specified keywords, then be stored into
corresponding topics which are managed by Kafka Brokers
in the Kafka cluster.

(2) Data Warehouse. In our platform, disaster tweets data
generated by Kafka Producer as semi-structured data in
JSON format. These data are stored in local files system with
data replicated mechanism to prevent data losses. For this
files, Kafka employs its own storage format that is based on
partitioned append-only log abstraction. After the data is
consumed by Kafka Consumers with some preprocessing
tasks by Spark Streaming, it is stored in Hadoop distributed
file systems (HDFS) [8][9] as text file format.
Simultaneously, the data are also stored in both Hive [10]
and HBase [11] for the purpose of querying data in

subsequently. HBase is a data model providing quick random
accesses to huge amount of structured data in distributed
system, while Hive isa data warehouse infrastructure built
on top of Hadoop for providing data summarization, query,
and analysis. In addition, MySQL database is used to store
the final output after data is analyzed by Spark. The output
data would be visualized by a web application.

(3) Data Analysis. In this module, the disaster tweets will
be handled by Spark with mathematical statistics and data
mining, machine learning techniques. Especially, Spark
MLIib is a scalable machine learning library which contains
a lot of algorithms such as classification, regression, and
clustering, while SparkSQL is Apache Spark's module
designed for working with structured data such as Hive or
Hbase. SparkSQL includes a cost-based optimizer, columnar
storage, and code generation to make queries fast. Therefore,
Spark-based analysis module in our platform will provide a
fast computation for real-time processing of disaster big data.

(4) Real-Time Data Visualization. \We develop
visualizations that take advantage of human perceptive to
enhance users’ disasters situational awareness and support
decision-making for disaster management center. First, the
display shows a map which uses Google Map API to create
markers for the locations where people posted the tweets
relating to disasters. Secondly, there are various of statistics
of disaster tweets reported in periods by using charts.

3. The Implementation of Disaster Big Data Platform

3.1. Core Algorithms of Data Collecting

The collecting module is implemented to crawl tweets
which contain the information relating to disaster from
Twitter source. In order to do this, we have implemented two
sub-modules: the first one is used to collect data posted in the
past by a given specific duration, and the other is used to
collect real-time tweets.

We implemented Producer component to look for tweets
from Twitter relating to disasters with the given keywords
corresponding to the topics and send tweets to Kafka topics.
For this purpose, we utilized Twitter APIs and Kafka
Producer APIs. We implemented two algorithms for
collecting two kinds of tweet data (historical and real-time)
that are illustrated as in Algorithm 1 and Algorithm 2.

- 662 -

20173 EAltad EO) 3| =2 HI243 H[12(2017, 4)

Algorithm 1. Procedure TwitterHistoricalProducer is used to
collect tweets

Input: oAuth, topicName, keywords, since, until, conditions
Procedure: Saving tweets satisfied conditions in Kafka topics.

- Initialize TwitterFactory by oAuth and KafkaProducer
. tweetSequence = 0
: query = makeQuery(keywords, since, until, conditions)
: results = TwitterFactory(query, tweetSequence)
: While results 1= NULL
5.1: while(results.length > 0):
5.1.1: KafkaProducer.save(results[0]), unset(results[0]);
5.1.2: tweetSequence = tweetSequence + 1.
5.2: results = TwitterFactory(query, tweetSequence)
5.3: if results.length == 0 then results=NULL

s N =

Algorithm 2. Procedure TwtiterReal TimeProducer is used to
collect tweets in real-time manner

Input: oAuth, topicName, keywords, filterPrams

Procedure: Saving tweets satisfied conditions in Kafka topics.

1: Initialize statusesFilterEndpoint with filterPrams, keywords
and Initialize blockingQueue
2: clientBuilder = makeClientBuilder(oAuth, blockingQueue,
statusesFilterEnadpoint)
3: clientBuilder.connect()
: clientBuilder.getTweets()
- Initialize kafkaProducer
- while(true)
6.1: for (int msgRead = 0; msgRead < 1000; msgRead++)
6.1.1: value = queue.take()
6.1.2: kafkaProducer.send(topicName, value)
6.2: clientBuilder.getTweets ()

o~ O

Algorithm 3. Procedure TwitterDataConsumer is used to
aggregate tweets from Kafka topics and save them to HBase
Input: fopics in Kafka cluster

Procedure: Import tweets data from Kafka to Hbase.

1: Initialize sparkConfand javaStreamingContext, consumer
2: consumer.subscribe(topics)

3: javalnputDStream = makeDirectStream
(javaStreamingContext, sparkConf, consumer)

4: record = javalnputDStream.getRecord()

5: Hbase.saveRecord(record)

6: streamContext.start();

To obtain tweets sent by Producer, we implemented
Consumer component. It is implemented for streaming data
whose source is stored in Kafka topics. To speed up
extracting data, we employed Spark Streaming with Kafka
Consumer APIs for aggregating and storing data. This
component will save data in Hive and HBase for
subsequently analyzing. The process of Consumer
component is illustrated in Algorithm 3.

3.2, Analysis Tweets Data

As mentioned before, after having some preprocessing
tasks in Consumers, the data is stored in Hive and HBase for
analysis phase. In this phase, we use Spark SQL to read data
from Hive and HBase, then implement some mathematical
statistics and disasters classification algorithms. In the scope
of this paper, for testing our platform, we have done several
implementations for tweets statistic as follows.

Annotation

. Fire @) Traffic Incndenls. Flood . Earthquake @) -Typhoon

.. e e oo

Userld: 63651873 L4 4
Username: zinpan ©
Time: Fri Mar 10 15:45:25 KST 2017
Text: #4248 #FEX|QAJE| NEABO|A 2XL... o
AFMSY7t 81 Hi2H0e... L
@ Digital Media City ° ¢
https://t.co/AijxDaAhdN

- o9

® e
Seoul
MESHEA

Figure 2. Real-time visualization for tweets about
disaster in South Korea

o Statistic tweets by type of disaster: The implementation
counts the number of tweets relating to each type of
disaster including: traffic incidents, earthquake, typhoon,
flood, and fire.

o Slatistic tweets rate of disasters type: This
implementation is similar to the previous implementation,
but it computes the rate of each type of disaster.

o Statistic disaster tweets by time: This implementation is
used to count the number of disaster tweets for every hour.
The result will indicate when disasters often occur.

o Statistic disaster tweets by cities: This implementation
counts the number of disaster tweets for every city in a
given country.

In the next phase, we implement a PHP web application
that read the results of the implementations above and
visualize them with various of charts (see the next section).

4. Evaluation

We deployed our platform on five server machines, and
each of them has 4 CPUs and 16GB of RAM. To evaluate
our platform, we deployed Kafka cluster on four machines,
and these machines are used to run Kafka consumers and
Spark computations. Another machine is used to run Kafka
producer and run Spark master, HBase master, and Hive. In
our experiments, for testing our platform, we collected and
analyzed the tweets relating disaster information in Korea
from Mar 07, 2017 to Mar 16, 2017.

Figure 2 illustrated a road map along with markers which
showed the location and type of disaster tweets. The users
can interact with this map to see the details of each disaster
tweets as shown in the map.

We collected approximately 21.000 tweets during the
testing time; which 800 of them has their locations known,
while the rest’s one is unknown. There are four statistics of
disaster tweets shown in Figure 3. In the first one called
“Statistics by disaster type”, the “traffic incidents” relating
tweets; accompanied by “earthquake” and “typhoon” ones;
were the most popular topics people often shared about.
Their leading rates could be observed from the statistic called
“Statistic by rate of disasters type”. Also, information from
the one called “Statistic of tweets by time” illustrated that
people shared their information most frequently from
daytime until night; which the highest time was in the
afternoon. The last statistic depicted that people from
metropolises often shared more tweets about disasters than
the ones from other cities.

- 003 -

20173 EAltad EO) 3| =2 HI243 H[12(2017, 4)

O localhost:8080/disaster/statistic

From 2017-03-07 x 3 To 2017-03-16

Statistic by disasters type

traffic incidents
earthquake
typhoon

flood

fire

0 50 100 150 200 250 300 ___

Number of tweets

Statistic of tweets by time

100

75

RSARMARN N RN NN BRSNS i

x (2

Display

Statistic by rate of disasters type

\
4

traffic incident @ earthquake typhoon
flood @ fire
Statistic by cities
Seoul
Daejon
Busan
Daegu
Suwon
Incheon
Others
O 0 O O O OOV O 0O O 08 L
6\0\%,19,1/‘7,50%% bpbfvc)Q

Number of Events

Figure 3. The web application for statistics of disasters from tweets in South Korea

5. Conclusion

This paper proposed a big data platform for collecting
and analyzing disaster data from Twitter. We designed and
implemented a collecting module to aggregate tweets relating
to disaster information. The platform supports streaming data
on distributed system and is enabled to collect both real-time
and historical Twitter data. The Spark-based module is
proposed for analyzing tweets data to support real-time
useful information extraction from irrelevant data. We also
designed and implemented a real-time visualization on the
web interface for showing the results of the analysis phase.
The experimental results proved our proposed platform could
be applied to disaster information based systems. In the
future work, we would focus on applying deep learning for
analyzing tweets data to provide accuracy of predicting
disasters.

Acknowledgment

This work was supported by the National Research
Foundation of Korea Grant funded by the Korean
Government (NRF-2014R1A1A1007734). This research was
supported by the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the ITRC (Information Technology
Research Center) support program (1ITP-2016-R2718-16-
0011) supervised by the IITP (Institute for Information &
communications Technology Promotion).

References

[1] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes twitter users: real-time event detection by social
sensors. In Proceedings of the 19th international
Sg%erence on World wide web, pages 851{860. ACM,
M. lfnran, S. M. Elbassuoni, C. Castillo, F. Diaz, and P.
Meier. Extracting information nuggets from disaster-
related messages in social media.” Proc. of ISCRAM,
Baden-Baden, Germany, 2013..

S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen.
Microblogging during two natural hazards events: what
twitter may contribute to situational awareness. In
Proceedings of the SIGCHI conference on human factors
in computing systems, pages 1079-1088. ACM, 2010.

K. Starbird, G. Muzny, and L. Palen. Learning from the
crowd: Collaborative Tiltering techniques for identifying
on-the-%;lound twitterers during mass disruptions. Proc.
ISCRAM, 2012.

Apache Kafka, “https://kafka.apache.org/”

Apache Zookepper, “https://zookepper.apache.org/”
Zaharia, Matei, et al. "Spark: Cluster Computing with
Working Sets.” HotCloud 10 (2010): 10-10.

Borthakur, Dhruba. "HDFS architecture guide."
HADOOP APACHE PROJECT
http://hadoo .aBache.org/common/docs/current/hdfs
design. pdf F2O 8): 39.

[9] Apache Hadoop, “http://hadoop.apache.org” (2009)

[10] Apache Hive, “https://hive.apache.org/”

[11] Apache HBase, “https://hbase.apache.org

(2]

- 664 -

